Assembly of the nuclear pore: biochemically distinct steps revealed with NEM, GTP gamma S, and BAPTA
نویسندگان
چکیده
A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP gamma S, and the Ca++ chelator, BAPTA. These reagents have allowed us to determine that the assembly of a nuclear pore requires the prior assembly of a double nuclear membrane. Inhibition of nuclear vesicle fusion by pretreatment of the membrane vesicle fraction with NEM blocks pore complex assembly. In contrast, NEM treatment of already fused double nuclear membranes does not block pore assembly. This indicates that NEM inhibits a single step in pore assembly--the initial fusion of vesicles required to form a double nuclear membrane. The presence of GTP gamma S blocks pore assembly at two distinct steps, first by preventing fusion between nuclear vesicles, and second by blocking a step in pore assembly that occurs on already fused double nuclear membranes. Interestingly, when the Ca2+ chelator BAPTA is added to a nuclear assembly reaction, it only transiently blocks nuclear vesicle fusion, but completely blocks nuclear pore assembly. This results in the formation of a nucleus surrounded by a double nuclear membrane, but devoid of nuclear pores. To order the positions at which GTP gamma S and BAPTA interfere with pore assembly, a novel anchored nuclear assembly assay was developed. This assay revealed that the BAPTA-sensitive step in pore assembly occurs after the second GTP gamma S-sensitive step. Thus, through use of an in vitro nuclear reconstitution system, it has been possible to biochemically define and order multiple steps in nuclear pore assembly.
منابع مشابه
Assembly of the Nuclear Pore: Biochemically Distinct Steps Revealed with NEM, GTP /S, and BAPTA
A key event in nuclear formation is the assembly of functional nuclear pores. We have used a nuclear reconstitution system derived from Xenopus eggs to examine the process of nuclear pore assembly in vitro. With this system, we have identified three reagents which interfere with nuclear pore assembly, NEM, GTP~S, and the Ca ÷+ chelator, BAPTA. These reagents have allowed us to determine that th...
متن کاملImportin beta negatively regulates nuclear membrane fusion and nuclear pore complex assembly.
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin beta negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin beta is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin ...
متن کاملThe formation of golgi stacks from vesiculated golgi membranes requires two distinct fusion events
We have reconstituted the fusion and assembly of vesiculated Golgi membranes (VGMs) into functionally active stacks of cisternae. A kinetic analysis of this assembly process revealed that highly dispersed VGMs of 60-90 nm diameter first fuse to form larger vesicles of 200-300 nm diameter that are clustered together. These vesicles then fuse to form tubular elements and short cisternae, which fi...
متن کاملGTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro
Nuclear envelope assembly was studied in vitro using extracts from Xenopus eggs. Nuclear-specific vesicles bound to demembranated sperm chromatin but did not fuse in the absence of cytosol. Addition of cytosol stimulated vesicle fusion, pore complex assembly, and eventual nuclear envelope growth. Vesicle binding and fusion were assayed by light and electron microscopy. Addition of ATP and GTP t...
متن کاملIdentification of cytosolic factors required for nuclear location sequence-mediated binding to the nuclear envelope
Nuclear protein import can be separated into two distinct steps: binding to the nuclear pore complex followed by translocation to the nuclear interior. A previously identified nuclear location sequence (NLS) receptor and a 97-kD protein purified from bovine erythrocytes reconstitute the binding step in a permeabilized cell assay. Binding to the envelope is specific for a functional SV-40 large ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 132 شماره
صفحات -
تاریخ انتشار 1996